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At first glance, it may seem that reconstructing the past is, in general, easier than 
predicting the future, because the past has already occurred and it has already 
left its traces, while the future is yet to come, and so no traces of the future 
are available. However, in many real-life situations, including problems from 
geophysics and celestial mechanics, reconstructing the past is much more 
computationally difficult than predicting the future. In this paper, we give an 
explanation of this difficulty. This explanation is given both on a formal level 
(as a theorem) and on the informal level (as a more intuitive explanation). 

1. A P A R A D O X I C A L  F A C T :  I N  S O M E  S I T U A T I O N S ,  I T  IS  
E A S I E R  T O  P R E D I C T  T H E  F U T U R E  T H A N  T O  
R E C O N S T R U C T  T H E  P A S T  

A t  f i r s t  glance, it seems that the pas t  mus t  be easier  to reconstruct  than 
the future. At  first  glance,  it seems l ike recons t ruc t ing  the past  mus t  be 
computa t iona l ly  easier  than predic t ing  the future,  because  (a) the past  is 
a l ready there, wi th  all  its traces left  for  the researchers  to pick,  while (b) the 
future is ye t  to come,  and it has not left  any  traces yet. 

In reality, it is often easier to predict  the future.  However ,  in many  
situations, it is computa t iona l ly  much eas ier  to predic t  the future than to 
reconstruct  the past. For  example :  

�9 In geophysics, if  we assume that we  know the laws descr ib ing how 
the sys tem changes  in t ime, then (a) pred ic t ing  the future is reasonably  
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easy: it means that we apply these known laws to predict the values 
of all physical quantities in all subsequent moments of time; so, if 
we have enough data, we can predict what will happen in thousands 
and millions of years; (b) however, if we want to use these same 
observations to reconstruct what happened in the past, the results 
of this reconstruction become much less certain and require much 
more computation. 
In celestial mechanics, if we know the current positions, masses, and 
velocities of all celestial bodes, then (a) we can very accurately 
predict where they will be in the future; e.g., we can very accurately 
predict the future trajectory of a spaceship; (b) however, it is much 
more difficult to reconstruct the past trajectory, e.g., to reconstruct 
where a given meteorite has come from; even when such a reconstruc- 
tion is possible (as with meteorites traced to Mars), the corresponding 
computations are much more complicated than the computations 
needed to predict the future. 

How can we explain this "paradox"? 

A side comment: from the commonsense viewpoint, this "paradox" is 
not so paradoxical after all. Above, we gave "scientific" reasons why one 
might expect the past to be easier to reconstruct. However, from the common- 
sense viewpoint, reconstructing the past is difficult. For example, the fact 
that the totalitarian regimes of Orwell's antiutopia (Orwell, 1963) could 
relatively easily suppress the past by destroying a few documents is a good 
indication that, in general, reconstructing the true past could be a difficult task. 

Why is this a paradox? If we know the exact equations, then, in principle, 
predicting the future and reconstructing the past are not that different in 
complexity. 

Let us give two examples. 

Example 1. Differential equations. Physical equations are usually invari- 
ant with respect to the change in time orientation (i.e., transformation t --> 
- t ) .  Hence, both predicting the future and reconstructing the past mean, in 
mathematical terms, that we integrate the same system of differential 
equations. 

Example 2. (Simplified) linear equations. In the simplified situation, 
when the equations describing how the future state f = (fl . . . . .  fn) of the 
system is related to its past state p = (p~ . . . . .  Pn) are linear, f = Ap, or 

f~ = ~, aup: (1) 
j=t 
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predicting the future means actually computing f,. from p j,  while reconstructing 
the past means solving the system of linear equations (1). 

�9 For predicting the future, we need n multiplications and n additions 
to compute each of n quantities fi that describe the future state. In 
total, we need O(n 2) computational steps. 

�9 There exist algorithms that solve linear systems in O(n ~) steps, where 
ot < 2.5, and it is conjectured that it may be possible to have a ~-- 
2 (see, e.g., Cormen et al., 1990). 

Thus, the computational complexity of reconstructing the past is almost 
the same as the computational complexity of  predicting the future. 

Uncertainties: an informal explanation of the paradox: 

�9 In case of  exact knowledge, the tasks of  predicting the future and 
reconstructing the past are of equal (or almost equal) computa- 
tional complexity. 

�9 Therefore, the only reason why these tasks are in reality computation- 
ally different is because the actual knowledge is not precise, we 
have uncertainties. 

What we are planning to do. In this paper, we will show that if we take 
uncertainties into consideration, then reconstructing the past is indeed much 
more complicated than predicting the future. 

We will show it on the example of the simplest possible relationship 
between the past and the future: the linear equation (1). 

2. MOTIVATIONS F O R  T H E  F O L L O W I N G  DEFINITIONS 

How can we describe uncertainty in pj and j~? Enter intervals. Measure- 
ments are never 100% precise. Thus, if as the result of measuring a certain 
quantity, we get a certain value ~, it does not necessarily mean that the actual 
value x of this quantity is exactly equal to ~. 

For example, if a car's speedometer shows 40 m.p.h., this does not mean 
that the speed is exactly 40.0000 m.p.h., it simply means that the speed is 
equal to 40 within the accuracy of this particular measuring instrument. 

The manufacturer of the measuring instrument usually supplies it with 
the upper bound A for the measurement error Ax = s - x; in other words, 
the manufacturer guarantees that IAxl < A. 

In this case, if we have measured a quantity x and the measurement 
result is ~, then the only information that we have about the actual value is 
that this actual value cannot differ from ~ by more than A, i.e., that this 
actual value must be within the interval [:~ - A, ~ + A]. 
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Computations that take this interval uncertainty into consideration are 
called interval computations (see, e.g., Kearfott and Kreinovich, 1996). 

Comments: 

�9 If  no such estimate is given, then for any given measurement result, 
we can have arbitrary actual value of x and therefore we can say nothing 
about the actual value. So, if we want to call something a measurement, 
some bound must be given. 

�9 Sometimes, in addition to the upper bound for the error, we know 
the probabilities of different error values. However, in many real-life cases, 
we do not know these probabilities, and the upper bound A is the only 
information about the measurement error Ax that we have. 

�9 Since we are considering the simplest case (of a linear system) 
anyway, in the present paper we will restrict ourselves to the simplest case 
when A is the only information. 

First step toward formalization. In the problem of predicting the future, 
we measure the past values pj and we try to reconstruct the future values f/. 
Since the past values are obtained from measurements, we only know the 
intervals pj = [p_j, pj ] of  possible values of  pj. 

Since we do not know the exact values o fp j ,  we cannot hope to predict 
the exact values off/ ;  at best, we can hope to get some intervals fi of possible 
values of f / .  

Similarly, when we reconstruct the past, we start with measuring the 
future values f/. Thus, we start with the intervals fi, and we are interested in 
finding the intervals pj of  possible values of  pj. 

We also need to describe uncertainties in aij. I f  we knew the coefficients 
aij precisely, then we would be able to complete the formalization. However, 
in many real-life situations, these values aij must also be determined from 
measurement, and are therefore also uncertain. 

How can we describe this uncertainty? A natural way to find the values 
of  aij is as follows: 

�9 We prepare, very carefully, a state with the known values of  parame- 
ters p = (Pl . . . . .  pn). 

�9 Then, after a certain period of time, we measure the parameters ft, 
. . . .  fn of the resulting state. 

The resulting measurements have uncertainty in them, so, as a result, we 
have the intervals fj of possible values of f j .  As a result, from equation (1), 
we can only get interval estimates for the unknown values aij. 

Comment. This is where time symmetry is broken. In the idealized case 
when measurements are absolutely precise, the problem is symmetric with 
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respect to time reversal: From the equation f = Ap we can go to a similar 
equation p = A- if  for an inverse matrix A- ~. 

However, under a more realistic circumstance, when we take uncertainty 
into consideration, the symmetry disappears. Indeed: 

We can carefully generate precise values in the present and trace 
how they evolve in the future. 
However, the very fact that we are generating these values right now 
means that before the generation, these values did not exist, and 
therefore their past "evolution" cannot be traced. 

For example, we can very carefully place a spaceship at a given position, 
give it a prescribed velocity, and by measuring its trajectory, test where it 
goes, say, in 1 min. However, it is impossible to make an experiment in 
which the initial position and velocity are fixed in such a way that the position 
in 1 min is equal to the fixed point. 

Now we are ready for the formal definitions. 

3. DEFINITIONS 

Definition 1. By predicting the future, we mean the following problem: 
Given: n intervals pj- = [pj, pj], 1 -< j --< n, and n • n intervals aij 

= [aij, -du], 1 <-- i , j  <-- n. 
-Find: The intervals fi = [_~if,.], 1 -< i --< n, of possible values of f /  = 

aijpj when aij E aij and pj E pj. 

Definition 2. By reconstructing the past, we mean the following problem: 
Given: n intervals fi = [~_/, fi], 1 -< i -< n, and n • n intervals aij = 

[aij, -dij], 1 <- i, j <-- n. 
Find: The intervals p~ = [p j, ~j], 1 <- j <- n, of possible values of pj, 

where f / =  X aijPij, aij E aij a n d  f~ E fi .  

4. RESULTS 

Known results of interval computations show that predicting the past is 
indeed much more difficult. It is known that the predicting the future problem 
(described in Definition 1) requires O(n 2) computational steps, while the 
reconstructing the past problem (described in Definition 2) is, in general, 
computationally intractable (NP-hard) (see, e.g., Rohn and Kreinovich, 1995; 
Kreinovich et al., 1993, 1996a,b; Lakeyev and Kreinovich, 1997). 

These results clearly prove that reconstructing the past is indeed a much 
more difficult problem than predicting the future. 
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Can we get  an intuitive understanding o f  these results? The  proofs of  
the above results are reasonably formal and not very intuitive. Since our goal 
is to solve a physical  problem, we would like to have some more intuitive 
explanations for why reconstructing the past is so more difficult. 

These explanations are provided in Oettli and Prager (1964) and Alefeld 
et al. (1996a, b,n.d.-a,b), which describe the geometry of the set of  possible 
values of  p = (Pl . . . . .  Pn) in Definition 2. Namely, it turns out that: 

�9 In the simplest case, the set is piecewise l inear (Oettli and Prager, 
1964). 

�9 For symmetric matrices aij, it is piecewise quadrat ic  (Alefeld et  al., 
1996a,b, n.d.-a). 

�9 In the general case, it can be o f  arbi trary algebraic complexi ty  (Alefeld 
et al., n.d.-b). 

On the other hand, the equations that describe the set of  possible values 
o f f  = (fl . . . . .  f , )  is Definition 1 are always quadratic. 

This difference in algebraic complexity gives an intuitive explanation 
of why reconstructing the past is a more difficult problem than predicting 
the future. 
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